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Message Passing (MP) and Distributed Shared Memory (DSM) are the two
most common approaches to distributed parallel computing. MP is difficult to
use, whereas DSM is not scalable. Performance scalability and ease of pro-
gramming can be achieved at the same time by using navigational programming
(NavP). This approach combines the advantages of MP and DSM, and it
balances convenience and flexibility. Similar to MP, NavP suggests to its
programmers the principle of pivot-computes and hence is efficient and scalable.
Like DSM, NavP supports incremental parallelization and shared variable pro-
gramming and is therefore easy to use. The implementation and performance
analysis of real-world algorithms, namely parallel Jacobi iteration and parallel
Cholesky factorization, presented in this paper supports the claim that the NavP
approach is better suited for general-purpose parallel distributed programming
than either MP or DSM.

KEY WORDS: Distributed parallel computing; navigational programming;
message passing; distributed shared memory; incremental parallelization.

1. INTRODUCTION

The two fundamental approaches to distributed computing, message
passing (MP), and distributed shared memory (DSM), each have a draw-
back: MP is hard to use, and DSM is not scalable. We propose a general-
purpose distributed programming approach called Navigational Program-
ming (NavP), defined as the programming of self-migrating threads either
explicitly with migration statements or implicitly through data distribution.



In distributed computing, computations are spread out to multiple
processing elements in order to utilize the power of these elements collecti-
vely. One way to disseminate computations, as provided by the NavP
approach, is to have the programmers insert navigational statements (e.g.,
hop()) into the program text. A sequential program becomes distributed
after such insertion, and it now performs distributed sequential computing
(DSC) with distributed data using a single locus of computation. Among
the benefits of such NavP-based DSC are improved performance on large
problems resulting from eliminating disk thrashing at a cost of modest
network communication, and increased programmability compared to
MP. (1, 2) The limitation of this DSC is that it is still sequential computing.
To gain more from distributed computing, multiple concurrent DSC
threads are orchestrated to perform distributed parallel computing (DPC).

The NavP approach combines the advantages of MP and DSM, and
balances convenience and flexibility:

1. With MP, distributing data usually means restructuring code. MP
parallel programs suffer from code tangling. In contrast, NavP-
based DSC code preserves the code structure of the original
sequential algorithm, and composing a DPC program from NavP-
based DSC threads avoids code tangling. The NavP approach uses
shared variable programming as the DSM does, and supports
incremental parallelization. As a result, NavP programs are easy
to develop and maintain.

2. DSM programs tends to move large data and suffer from false
sharing. Synchronizations in a DSM program are usually done
with barriers—global operations that are in most cases too strict
and expensive. In contrast, similar to MP, the NavP approach
follows the principle of pivot-computes, which is defined as the
principle under which a computation takes place on the node that
owns the large-sized data. This node is called the pivot node.
A NavP program does not move more data than needed, and it
only uses local events for synchronizations. As a result, NavP
programs are efficient and scalable.

In this paper, we describe the NavP approach to distributed parallel
computing, and describe the steps necessary to turn a sequential algorithm
into a NavP-based distributed parallel program. We compare the ease of
programming and efficiency of our NavP approach with the DSM and MP
approaches. This is done by using two real-world algorithms: Jacobi itera-
tion and Cholesky factorization. We present a performance comparison
between ours and the MPI (3) implementations. For Cholesky factorization,
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we also compare the performance with that of a ScaLAPACK (4) imple-
mentation. These examples support the claim that the NavP approach is
better suited for general purpose distributed parallel programming than
either MP or DSM. (5)

The rest of the paper is organized as follows. Section 2 introduces the
important concepts and features of the mobile agent system Messengers,
which is the underlying system supporting NavP. Section 3 presents the
NavP approach to distributed sequential computing and compare it with
MP. Section 4 describes the NavP approach to distributed parallel com-
puting and its advantages. Section 5 provides the typical steps of the NavP
approach. Section 6 is case studies of two real-world applications, with the
comparisons of the approaches listed in Section 7. The last section contains
our conclusions.

2. THE MESSENGERS SYSTEM

The Messengers system, (6–9) developed in the School of Information &
Computer Science at the University of California, Irvine, is an environment
for general-purpose distributed computing. In the Messengers system,
applications are developed as collections of self-migrating threads, called
Messengers. Like many implementations of mobile agents with strong
mobility, (10–16) a Messenger can halt its execution, encapsulate the values of
its variables, move to another node, restore the state, and continue execut-
ing. In Messengers, this sequence of operations is carried out by a hop()
statement.

There are two types of variables in the Messengers language: agent
variables and node variables. An agent variable is private to a particular
Messenger and travels with that Messenger as it migrates through the
network. A node variable is stationary, and is public and accessible by all
Messengers currently on the node to which the variable belongs. Hence
agent variables can be used to carry data between nodes, while node
variables typically hold large amount of data and can be used for ‘‘inter-
thread’’ communication.

A Messenger’s programmer tells it to migrate with the navigational
statement hop(). A destination node’s address or a link between the source
and the destination nodes can be used as the argument for the hop()
statement. When a Messenger hops, it takes the data in its agent variables
with it to wherever it migrates.

A Messenger can spawn another Messenger using the statement
inject(). Synchronization among Messengers uses ‘‘events.’’ The statements
of signalEvent() and waitEvent() implement the classical operations of
process blocking and wake-up. Since no remote data accessing is allowed,
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the events are only local and so is synchronization. A Messenger’s execu-
tion is not preempted between any two navigational statements. A Mes-
senger must explicitly relinquish control to other Messengers using state-
ments such as hop() or inject(). We call this feature ‘‘non-preemptive
scheduling.’’

In Messengers, the concept of a mobile agent is used as a program-
ming model. This is in contrast to many Java mobile agent systems, where
the emphasis is on actual code mobility. Strong mobility in Messengers
system means that computation, but not code, navigates through the
network. To do so, a two-phase compilation is used by the Messengers
compiler. In the first phase, a Messengers program is broken into smaller
C functions at navigational statements. The execution of these functions is
‘‘chained’’ by a logical program counter called ‘‘the pointer to next func-
tion.’’ (7) This logical program counter and the agent variables are commu-
nicated between the nodes using socket-level message passing. The over-
head due to the bookkeeping (i.e., a Messenger control block (MCB)
carrying a Messenger’s internal information (17)) of a Messenger is about
200 bytes. That is, a hop() will send about 200 bytes in addition to the
actual data, which would also have to be sent in an MP program. In the
second phase, the C functions are further compiled into machine native
code and loaded on the nodes in the form of dynamic shared libraries for
execution. One subtle but important feature of the Messengers system is
that it allows code to either be loaded from a shared disk or, in a non-
shared file system, to be sent across the network at most once, irrespective
of how many times the locus of computation moves across the network. (18)

3. DISTRIBUTED SEQUENTIAL COMPUTING

Distributed sequential computing (DSC) is computing with distributed
data using a single locus of computation. The original motivation for
introducing DSC was improving performance on large problems by elimi-
nating paging overhead without the need of developing parallel
algorithms. (1, 2) Using NavP, sequential programs are easily augmented into
scalable DSC programs. A second advantage of DSC is that it serves as a
good starting point for incremental parallelization. In distributed parallel
computing (DPC), concurrent DSCs are orchestrated to perform one task
together.

A simple example reveals why the NavP-based DSC has better
programmability and hence is easier to use than message passing, and why
it is more efficient and scalable than DSM. The example is a sequential
loop over an 1-D array A[1:n], with pseudocode shown in Fig. 1(a).
Because of the dependency between A[i] and A[i − 1], this loop is hard to
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Fig. 1. A loop over distributed data. (a) Sequential or DSM. (b) MP. (c)
NavP.

parallelize. (19) For simplicity, n is assumed to be even, and the first n/2
elements of A[.] are assumed to be on node 1 and the second n/2 elements
on node 2.

DSM is easy to use to carry out a DSC task; the DSM code is exactly
the same as the sequential code shown in Fig. 1(a). Since the algorithm is
sequential, a stationary process would run the code on one of the two
nodes (e.g., node 1) throughout the computation. Nevertheless, there is a
cost to be paid for the ease of use because now the computation is on dis-
tributed data. That is, the stationary process would ‘‘pull in’’ half of the
array from the remote node to its local node for computation to continue.
This is neither efficient nor scalable. The DSM program violates the prin-
ciple of pivot-computes.

In order to follow the principle of pivot-computes, the locus of com-
putation has to migrate from one node to the other. In the sequential MP
code shown in Fig. 1(b), the shift of locus of computation is done using
message passing. The loop is broken into two parts, based on where data
and computation are, one in the if construct corresponding to node 1 (lines
(1), (2), and (3)), another in the else if construct for node 2 (lines (1Œ), (2Œ),
and (3Œ)). With MP, distributing data thus means restructuring code
according to execution location. At the array boundary with A[n/2] on
node 1 and A[n/2+1] on node 2, explicit communication of A[n/2] and
synchronization are needed to transfer the locus of computation (lines (3.1)
and (3.3)), even if the program is still sequential. The two restructured code
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blocks (lines (1)–(3), and lines (3.4)–(3Œ)) now only compute with local data
(received messages are buffered locally).

In the NavP implementation, with pseudocode shown in Fig. 1(c), the
loop index i and the temporary variable x are agent variables. The NavP
program does not require explicit data transfer and synchronization
because the communication of i and x between the nodes is ‘‘intra-thread’’
as the self-migrating thread hops across the array boundary, and the syn-
chronization is subsumed in the flow control. The NavP implementation
preserves the original loop structure. The burden of code restructuring
according to where the data and computations are is taken away from the
application programmers, and passed down to the Messengers compiler.
The NavP implementation also follows the principle of pivot-computes
because the locus of computation moves with the thread, which dynami-
cally makes it the owner of the large sized data (i.e., A[.]) involved in the
computation.

The array A[1:n] is a distributed shared variable or DSV, which is
defined as logically one single variable composed of multiple node
variables. In this example, the array A[1:n] is logically one single variable
constructed using two node variables A[1:n/2] each having half the size of
the array. The NavP approach makes shared variable programming pos-
sible beyond shared memory. (5) A global view of the array (i.e., global
indexing) is preserved by a DSV through a shifted array pointer (5) or a
global-local array index map (an example is given in Section 6.2). In con-
trast, processes in MP use local views of the local data they own (for
instance lines (1) and (1Œ) in Fig. 1(b), and the example shown in Sec-
tion 6.2). Table I gives a taxonomy of variables in NavP code. In general,
whatever can be passed as messages in MP code can be put in agent
variables. Also, the data (e.g., a loop index) that is locally scoped to a
migrating computation (e.g., a loop that spans over multiple nodes) can be
put in agent variables.

Table II lists the problems that arise in distributed sequential pro-
gramming and compares how the MP and NavP approaches address these
problems.

First, in order to follow the principle of pivot-computes, the locus of
computation needs to be shifted from node to node. Normally, processes

Table I. A Taxonomy of Variables

local distributed

private (none) agent variable
public node variable DSV
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Table II. Problems and Solutions in Distributed Sequential Computing

Requirements Problems MP Solution NavP Solution

1. shift locus of computation execution cannot restructure code hop
continue

2. shift locally scoped data data does not explicit transfer carry
follow or recompute

3. treat data in global view index reset to 0 no attempt to solve global-local map

cannot migrate across machines at arbitrary points in the middle of execu-
tion because their program counters would become invalid. The MP solu-
tion to this problem is to break the global loop into smaller local loops.
Hence partitioning of the data requires restructuring of the code. The NavP
approach, on the other hand, enables the application programmer to see
the problem from a different view. Self-migrating threads are able to
migrate across node boundaries at the application level. Second, when the
locus of computation shifts, some evolving data that is scoped locally to
the computation (e.g., the loop index) needs to follow. This does not
happen automatically. The MP solution is to either explicitly transfer, or
locally recompute this data. In the NavP approach, this type of locally
scoped data is carried in agent variables. Third, an original sequential
algorithm is usually developed without considering any data distribution
issue. All data is treated in a global view, i.e., any data can be accessed
from anywhere in the algorithm pseudocode with the same index. This may
not be true anymore for the algorithm’s implementation in a distributed
memory environment. For example, the starting index of a distributed
array is reset to 0 or 1 across machine boundaries. In the MP implementa-
tion, because the code is restructured around execution locations, and the
focus of the programmer is placed on local process computing on local
data, the global view of data is lost completely. In NavP code, a global
view is preserved so that the data accessing looks the same as in the origi-
nal algorithm. DSVs with array pointer shifts, or global-local array index
maps are the mechanisms used to preserve a global indexing, and thread
migration is the ‘‘bridge’’ (5) linking the distributed memories.

The transformation from a sequential algorithm to its NavP-based
DSC implementation preserves the original code structure and introduces
only minor changes. We say that this kind of transformation preserves
algorithmic integrity. (1, 2) This is why the NavP approach is easier than MP.
A NavP program also follows the principle of pivot-computes, which is
why it is efficient and scalable.
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4. DISTRIBUTED PARALLEL COMPUTING USING NAVP

The simple example shown in Fig. 1 has no concurrency in the com-
putation. Yet it is still interesting and useful to study the programming of
sequential algorithms in a distributed environment. This is because DSC
not only can improve the performance of large sequential problems by
eliminating disk paging with only minor re-programming efforts, (2) but also
help distributed parallel computing (DPC).

A parallel programming model can be based on data parallelism or
task parallelism. (20) In data parallelism, identical computations are simul-
taneously applied to different data elements of the entire problem, while
in task parallelism concurrent executions of different computations are
applied to the same or different data elements. In either of these classifica-
tions, sequential computations are fundamental building blocks. These
sequential computations can be running concurrently, or they can be
waiting for one sequential task to finish before they can continue. There
will be at least one such sequential task that computes on distributed data,
which makes it DSC, unless the computations can be divided into a
number of completely independent sub-tasks with no communication and
synchronization among them. Algorithms that can be perfectly parallelized
are called ‘‘embarrassingly parallel,’’ but they are rare, easy to deal with,
and hence of little interest in this work. In fact, most parallel algorithms
have inherently sequential portions that become bottlenecks for speedup;
this phenomenon is the basis of Amdahl’s law and its variants.

The NavP approach to DPC, as it is today, belongs to explicit parallel
programming in which a programmer is required to code an explicitly par-
allel algorithm. (21) There are two major issues in parallel programming:
data locality and concurrency. (21) The performance of a parallel program
depends on both. As observed in our previous work, (2) the NavP approach
exploits data locality well while preserving algorithmic integrity for dis-
tributed sequential computing. If a computation is subdivided into DSC
sub-tasks with some of them running concurrently in certain periods of
time during the entire execution, ease of programming and good data
locality can then be achieved through the programming and composing of
these NavP-based DSC sub-tasks. The fundamental idea behind the NavP-
based distributed parallel computing is to decompose the computation into
NavP-based DSC threads and orchestrate them together to solve one
problem.

The NavP-based DPC differs from the DSM and MP approaches in
several important aspects. With DSM, the problem is decomposed into
DSCs, and each of these DSC sub-programs preserves algorithmic
integrity. Nevertheless, as demonstrated by the simple example shown in
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Fig. 1(a), each of these DSCs may be less efficient and scalable as the prin-
ciple of pivot-computes may be violated and hence data locality is not
exploited fully. Also, concurrent DSCs running on page-based DSMs may
be accessing data on the same page resulting in false sharing and hence
poor performance. Furthermore, since remote data accessing is provided,
synchronization in DSM programs are usually done using a barrier—a
global operation that is too strict and expensive. The MP approach is more
efficient and scalable, but it has rather poor programmability. In MP, pro-
cesses run in parallel on their home nodes and communicate with one
another by sending and receiving messages. The processes do not have a
common memory address space. This forces problem decomposition to be
centered around executing locations (i.e., nodes). In particular, with MP,
computations are decomposed into strictly sequential computing sub-tasks
(i.e., non-distributed) assigned to execution locations using if or else if
constructs. As a result, code is restructured for distributed sequential
computing. A simple example is shown in Fig. 1(b). Furthermore, for par-
allel computing the code corresponding to different sub-tasks is tangled
within one if or else if block, each corresponding to a node location where
the code block is executed, ‘‘polluting’’ each other. An example of this code
tangling is presented in Fig. 7 in Section 6.2. This code restructuring and
code tangling makes MP programming significantly harder than DSM or
the NavP-based DPC.

Using NavP-based DSCs to compose DPC programs has the following
advantages. First, as we observed before, (1, 2) each NavP-based DSC
program preserves algorithmic integrity and exploits data locality well.
Second, NavP code encapsulates the state and behavior of each sequential
sub-task, and the coordination among the threads is done using injections
or events. Thus the code tangling that occurs in MP—when portions of the
code belonging to different tasks must be intermingled because they are
executed on the same node—is avoided. These two advantages make the
NavP-based DPC easy to use. Third, similar to DSM, the NavP-based
DPC uses shared variable programming, (5) but since no remote data
accessing is allowed, no global synchronization is needed. Synchronizations
are through local events that are perceivable by self-migrating threads
running on the same local node. This local synchronization and the fact
that each DSC sub-computation exploits data locality well are the reasons
why NavP-based DPC is efficient and scalable. We will use real-world
applications and analysis to demonstrate these advantages in Section 6.
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5. THE STEPS OF THE NAVP APPROACH

Starting from a sequential algorithm, there are three steps in develop-
ing a NavP-based DPC program.

1. data distribution: A programmer first maps the data to different
machines. In doing so, two rules should be followed. The first is
that the programmer needs to make sure the data distribution and
the algorithm are such that the computation is at a coarse gra-
nularity level. This is an important factor for good performance.
Fortunately, many algorithms exhibit some degree of locality of
access and are coarse grained. The second is that the size of the
data set on each machine should not exceed the main memory of
the machine in order to avoid heavy disk paging.2 These two rules
are not unique to NavP. Any programming approach would
require such data mapping.

2 To be precise, the ‘‘working set’’ on each node should not exceed the main memory. In this
paper, we use ‘‘data set’’ for simplicity.

2. DSC: In this intermediate step, the programmer augments the
sequential algorithm with hop() and load/unload statements (to
load data to/from agent variables) to make a DSC program. It is
important to follow the principle of pivot-computes in the sub-
computations of the program. A sub-computation can be any of
the basic programming constructs, such as a loop.

3. parallelization: In this step, the programmer transforms a DSC
program into a DPC program. There are two sub-steps here, the
order of which is not important. Step 3.1 Parallelization: In this
sub-step, the programmer determines whether any dependencies
exist across hop() statements. Note that with the NavP approach
this is considerably simpler than general data dependency analy-
ses, because all that is needed is to check whether the computation
at the time of the hop carries any intermediate results from the
previous node to the next node. If not, the computations on the
two different nodes are independent and the code may be split at
the point of the hop() statement. The hop() statement is removed
and two computations become two concurrent DSCs. An inject()
or a clone() statement is needed to spawn a separate thread for
each node. The Cholesky factorization shown in Section 6.2 is an
example of such parallelization. Step 3.2 Pipelining: In this sub-
step, the programmer looks for opportunities for pipelining. In
some cases, the computations across a hop() statement depend on
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each other, but the DSC can be pipelined in the network of nodes
linked with hop() statements. The programmer can then slice the
sequential computation into a sequence of smaller computations
and assign them to different threads. Each thread hops to the next
node as soon as it finishes its computation on the current node,
and all the threads build a pipeline. Further improvement may be
possible when the computations assigned to different threads can
shift phase to achieve complete parallelism without changing the
result of the entire computation. The Jacobi iteration shown in
Section 6.1 provides an example of pipelining and phase shift. The
above two sub-steps can be iterated as needed. Step 3 can be
applied repeatedly to achieve incremental parallelization.

The above three steps may need to be reiterated one or more times.
This is because the data distribution scheme developed in Step 1 empha-
sizes only data accessing locality for DSC, and in Step 3 this distribution
may need to be adjusted for load balancing, without losing the locality. We
do this based on the observation that exploiting data locality has greater
benefits over load balancing, and hence should take the priority. (22) Our
approach provides incremental parallelization with Step 2 as a starting
point and with a repeated use of Step 3. A programmer can choose to use
the DSC program as a result of Step 2 if parallelization is impossible or
impractical, or incrementally parallelize it as new opportunities are found
during the repeated iterations of the steps. In contrast, MP is not amenable
to incremental parallelization. (20) In the three steps, the two concerns in
distributed parallel programming, namely data locality and concurrency,
are separated in each iteration.

The above steps may be reordered or combined by some experienced
programmers. As long as the steps are repeated and feedback is provided to
each step in future iterations, it does not particularly matter which step we
choose as the starting point.

6. CASE STUDIES

In this section, we present two examples, namely parallel Jacobi itera-
tion and parallel Cholesky factorization. We chose Jacobi iteration because
it lends itself naturally to implementations using both MP and NavP. In
fact, because the code structures of these two implementations are so
similar, we only provide the NavP pseudocode. In contrast, Cholesky fac-
torization is an application in which parallel steps alternate with steps that
are inherently sequential. As a result, the NavP and MP implementations
have very different structures. Hence both pseudocodes are presented.
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For both examples we present performance data for the MPI and
Messengers implementations. For Cholesky factorization, performance of
ScaLAPACK (4) is also presented for comparison. A detailed comparison of
programmability and scalability of the different implementations will be
presented in Section 7. All performance data were obtained from SUN
Ultra 60’s with 256MB of main memory, 1GB of virtual memory, and
100Mbps of Ethernet connection. These workstations run Solaris 8, and
have a shared file system (NFS). The MPI system we used for performance
comparison was LAM 6.5.9 from Indiana University. (23, 24) The mobile
agent system used was Messengers. (9) The C compiler used was
gcc 3.2.2, the Fortran compiler (for ScaLAPACK) used was
g77 3.2.2. All matrices in the codes were single-precision real. This cor-
responds to the data types ‘‘float’’ in C and ‘‘real*4’’ in Fortran, respec-
tively.

6.1. Parallel Jacobi Iteration

Jacobi iteration (25) is an iterative solution scheme used in solving
systems of linear equations. The basic steps of Jacobi iteration are listed
below.

Let

Au=f (1)

be a system of linear equations, where A is an N × N matrix, u and f are
vectors of size N. Matrix A can be decomposed into

A=D − L − U, (2)

where D is the diagonal of A, and −L and −U are the strictly lower and
upper triangular parts of A. Equation (1) can then be re-written as:

Du=(L+U) u+f, (3)

or

u=D−1(L+U) u+D−1f. (4)

Note that since D is a diagonal matrix, computing the inverse of D is
trivial.

We define the Jacobi iteration matrix by

P=D−1(L+U), (5)
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where a generic element of P, pst, is given, with respect to an element of A,
ast, by

pst=˛0 if s=t;

−
ast

ass
otherwise.

(6)

We can introduce iteration in Eq. (4), and express the Jacobi iterative
method as:

un+1
P Pun+D−1f, (7)

where un is the solution vector at iteration step n, and u0={0}. Equa-
tion (7) reveals that parallelizing Jacobi iteration is essentially parallelizing
matrix-vector multiplications at each iteration step.

If we partition the matrix P and the vectors into blocks and sub-
vectors, respectively, we can re-write Eq. (7) in block fashion as:

un+1
i P C

p − 1

j=0
Piju

n
j +D−1

ii fi, (8)

for i=0 : p − 1, where p is the number of segments into which the solution
vector u is sub-divided. Matrices P and D are sub-divided into p2 pieces.
un+1

i and un
j are sub-vectors, and Pij and Dii are sub-matrices.

Figure 2(a) lists the pseudocode for parallel Jacobi iteration using
DSM. Each process executes this code. In the pseudocode, m is the ID of
the current process and m=0 : p − 1. The while loop (lines (3)–(14)) runs
until the global error err satisfies a user defined tolerance TOL. The for
loop (lines (5)–(9)) and line (10) compute um—the sub-solution vector for
the next iteration (see Eq. (7)). Each process computes a ‘‘local’’ error r[m]
corresponding to the sub-solution it is responsible for at line (11). A ‘‘glo-
bal’’ error err is computed, for the previous iteration, at line (6). A syn-
chronization is done by the barrier statement at the end of each iteration at
line (13).

For the Messengers implementation, we decompose the square matrix
A vertically into p ‘‘slices,’’ where p is the number of participating nodes.
We pick p to be such that the matrix slices fit into their corresponding local
memories completely so that no disk paging will occur anywhere at any
time. The vertical slice on each participating node is further decomposed
into p sub-matrices, which become the basic matrix blocks of the block-
fashion Jacobi iteration. The vectors holding solutions for the nth and
(n+1)st steps and right-hand-side vector f are also subdivided into p
subvectors.
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Fig. 2. Pseudocode for parallel Jacobi iteration. (a) DSM. (b) NavP.

Figure 3 shows an example with p=3. Each large square box in
dashed lines represents the memory of a node, while each small box in solid
lines represents a thread. The subvector un+1

i , i=0 : p − 1 inside a small box
is stored in an agent variable, and is carried by the thread to wherever it
migrates. The three node variables representing matrices Aij, i, j=0 : p − 1
together make a distributed shared variable, or DSV. Similarly, un

i , fi,
i=0 : p − 1 are each a DSV respectively. The arrows depict how the three
self-migrating threads will hop following one another in the ring linking all
the nodes. We note that in conventional MP implementations of Jacobi
iteration, the matrix is partitioned and distributed in horizontal slices,
rather than vertical slices. Changing our code to use horizontal slices
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Fig. 3. Memory use in NavP parallel Jacobi iteration.

would require only a minor modification, namely having the self-migrating
threads carry the un

i ’s and storing the un+1
i ’s as node variables.

To compute the summation in Eq. (8), un+1
i and Pij, un

j , j=0 : p − 1,
need to be together on the same node for each value of j. Since only Aij’s
are stored (as shown in Fig. 3), and Pij’s are implicitly computed from Aij’s
using Eq. (6), the above requirement is equivalent to having un+1

i and
Aij, un

j , j=0 : p − 1 together for each value of j. Notice that since in terms
of data storage and access pattern Pij and Aij are the same, in the following
we may inter-change the use of Pij and Aij (i.e., to describe the algorithm
correctly we use Pij (Eq. (8)), but to discuss data accessing pattern we may
use Aij (Fig. 3)). The efficient way is to have the large data Aij’s stay where
they are on the pivot node, and let small data pieces un+1

i ’s go ‘‘meet’’ with
them for computation. This follows the principle of pivot-computes.
Figure 3 shows that subvectors and matrix blocks marked with same
greyscales must be together at some stage during the computation of the
summation, and this is done with self-migrating threads carrying un+1

i and
hopping among participating nodes.

Figure 2(b) lists the pseudocode of block-fashion NavP-based parallel
Jacobi iteration. Lines (1.3) to (14.1) are code for a thread named Jacobi.
Between lines (2)–(14) this code is not much different from the correspond-
ing DSM code shown in Fig. 2(a); the only change is the insertion of one
hop() statement. This is an advantage referred to as algorithmic integ-
rity. (1, 2) The node_map( ) shown at lines (0.2) and (8.1) is a matrix-piece-to-
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node map. Self-migrating threads are able to access shared but remote data
pieces (e.g., Aij’s) they need with migrations. To self-migrating threads, any
distributed shared variable is just ‘‘hops away.’’ When threads migrate,
they carry with them their locally scoped data. In this example, the locally
scoped data includes the sub-vector um that is being computed, the loop
counters j and c, and the global error err that is being collected from all
node variables r. Notice that the for loop at lines (0.1)–(1.2) in Fig. 2(b) is
not superfluous: the DSM code is written in an SPMD (single program
multiple data) style and is executed on all nodes, while the NavP approach
needs a dispatcher to inject concurrent threads on appropriate nodes, and
orchestrate the execution of the parallel computation.

In the NavP-based parallel Jacobi program, each thread is doing dis-
tributed sequential computing (1) with one locus of computation at any time.
With proper synchronization, concurrent threads can be organized to
collectively work around large data pieces to further achieve parallelism. In
this example, no explicit synchronization is needed because the threads are
non-preemptive (discussed in Section 2), and no one can pass another to
break the sequence of shared variable accessing. Fig. 4(a) depicts how three
self-migrating threads each representing a DSC coordinate with each other
in time and space to achieve parallel computing.

Table III and Fig. 5 show the performance comparison between NavP
and MPI implementations with various matrix sizes on different numbers
of workstations. Sequential elapsed times were generated by running a C

Fig. 4. Concurrent threads in distributed environment. (a) Jacobi. (b) Cholesky.
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Table III. Performance of Parallel Jacobi Iteration

Matrix Size 8000 12000 16000 20000

Number of Time Speed Time Speed Time Speed Time Speed
Workstations (s) up (s) up (s) up (s) up

Sequential

1 29.71 1.00 66.81 1.00 118.88 1.00 185.50 1.00

Messengers

2 16.91 1.76 - - - - - -
4 8.18 3.63 18.71 3.57 - - - -
6 5.56 5.34 12.43 5.38 - - - -
8 4.42 6.72 9.36 7.14 16.53 7.19 - -

10 3.42 8.70 8.12 8.23 13.36 8.90 - -
12 3.11 9.56 6.63 10.08 11.56 10.28 17.19 10.79

MPI

2 16.51 1.80 - - - - - -
4 8.24 3.60 18.39 3.63 - - - -
6 5.44 5.46 11.94 5.59 - - - -
8 4.45 6.68 9.23 7.24 16.22 7.33 - -

10 3.34 8.90 7.24 9.22 13.19 9.01 - -
12 2.79 10.66 6.65 10.05 11.54 10.30 17.17 10.80

program that implements a block-fashion of Jacobi iteration. The number
of blocks was chosen to be 16. This gives a better performance than that of
a non-block-fashion sequential implementation. The scaled speedup of the
NavP program is almost the same as that of the MP program, and their
trends as the number of machines increases are the same which indicates
same scalability.

The parallel Jacobi program is ‘‘homogeneous’’ in that on all partici-
pating nodes, exactly the same computation, e.g., matrix-vector multiplica-
tion, is executed at any time. For this type of parallel programs, message-
passing programming is able to do almost as nicely as NavP programming
is, because all MP processes run the same code and no code structure is
broken. In Section 6.2, we will present a more complicated algorithm in
which parallel steps are interleaved with sequential ones.
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Fig. 5. Performance of parallel Jacobi iteration.

6.2. Parallel Cholesky Factorization

Cholesky factorization is an algorithm for factorizing symmetric posi-
tive definite matrices. In this subsection, we briefly describe this algorithm,
and then present three implementations, using the DSM, NavP, and MP
approaches. The MP and DSM implementations of Cholesky factorization
are based on those in a classic book on matrix computations. (26)

A positive definite matrix A can be factored into the product of two
matrices

A=GGT, (9)

where G is a lower triangular matrix called the Cholesky triangle. This
decomposition can then be used for different purposes, such as to solve a
linear system of equations of Ax=b. The Cholesky factorization algorithm
takes A as its input and produces the matrix G. It works in place on the
matrix A; when it concludes, the entries on and below the diagonal are the
entries of G. For simplicity we will assume here that A is a full n × n matrix.

Depending on the order used to update the matrix A, there are two
different sequential implementations, namely, inner and outer product
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Fig. 6. Pseudocode for parallel Cholesky factorization. (a) DSM. (b) NavP.

versions. Figure 6(a) contains pseudocode for a parallel implementation of
outer product Cholesky factorization in shared memory or DSM, adapted
from the code given in the book. (26) Notice that the book assumes that the
DSM system used requires that data in the shared memory be copied to
local variables before any computations can be applied to it.

In the algorithm shown in Fig. 6(a), there are two types of computa-
tions performed on the columns of the matrix A:

1. scaling: A column is scaled using its diagonal term. This happens
in each iteration over the matrix columns, and has a time com-
plexity of G(n) for each iteration. We can gain little if we
parallelize the scaling at each iteration, but we are unable to
parallelize the scaling as an entire task because the scaling itera-
tion steps are sequential.

The columns that have been scaled are called G columns.
These columns will no longer be modified but will be used in later
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computation. Scaling processes all columns sequentially from left
to right, i.e., a column is ready to be scaled only after all the
columns to its left have been scaled and therefore turned into G
columns, and after itself is updated using the information from all
these G columns;

2. updating: A column is updated using the values in all the G
columns to its left. This is the expensive part of the algorithm: the
work done in each iteration of k is G(n2). This portion of the
algorithm is parallelized.

The DSM implementation assumes that there are p nodes, each exe-
cuting the pseudocode shown in Fig. 6(a). The index k loops over all the
columns of A (line (1)). The first node with node ID m==1, is responsible
for scaling column k (lines (2)–(6)), after which all the nodes, including
node 1, will update in parallel the columns they are responsible for and that
are to the right of column k (line (8)). In particular, node m will update the
columns (k+m) : p : n (lines (13)–(17)); that is, the columns starting at
k+m, ending at up to n, with an increment of p. After all the nodes are
done updating, node 1 can start scaling on the next column (k+1), and the
computation thus continues. Again it is assumed that computations cannot
be done directly to shared variables, (26) so lines (3), (5), (12), (14), and (16)
are used to copy data using and from the shared variable A. Not all DSMs
have this limitation, in which case these extra lines could be removed from
the pseudocode. We include these lines to emphasize that the actions they
represent do take place when the terms of matrix A accessed resides in
remote memory.

In order to balance load, a scheme for computation distribution is
proposed in the book. (26) The basic idea is to update the columns in a
round-robin fashion. This is illustrated by the following simple example.
Suppose the number of columns in A is n=11, the number of nodes is
p=3, and the ith column of A is denoted by ai. In the most straightfor-
ward way, the updating of columns would be assigned to nodes as follows:

[a1 a2 a3 a4 : a5 a6 a7 a8 : a9 a10 a11].
node 1 node 2 node 3

In the round-robin scheme, on the other hand, the assignment of
column computations to nodes is as follows:

[a1 a4 a7 a10 : a2 a5 a8 a11 : a3 a6 a9].
node 1 node 2 node 3
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In the contiguous allocation scheme, node 1 would be idle after
columns 1 to 4 have been computed, even though much work remains.
In the round-robin scheme, node m carries out the construction of
G(:, m : p : n) where the column index starts from m, ends at up to n, with
an increment of p. This scheme distributes the computation of matrix A
evenly to all participating nodes, and ensures that all of the nodes are busy
most of the time and they finish at about the same time.

The DSM pseudocode Fig. 6(a) describes the algorithm of Cholesky
factorization using the round-robin computation distribution scheme, but
without specifying how data is distributed. With unstructured DSM where
programmers have no control over data distribution, the DSM generated
data distribution is a well-known reason for inefficiency. We will return to
this issue in Section 7.1.

In the NavP implementation, data distribution follows the round-
robin fashion. A mechanism similar to what’s provided by the qualifier
shared in HPF or UPC can be used by a NavP programmer to define the
data distribution pattern. The NavP program is written in Messengers,
and the pseudocode is shown in Fig. 6(b). There are two types of threads: a
single scaling thread named Scaler (with code lines (1)–(10)), and multiple
updating threads named Updaters (with code lines (11)–(18)). Scaler carries
the loop index k, an agent variable, that loops through all columns of
matrix A—a distributed shared variable. On the kth iteration, Scaler scales
column k (line (4)). The function col(k) maps the global column index k to
a local column index; this function is needed because each node stores only
a portion of the entire global matrix A. After scaling the column, Scaler
injects p Updaters (lines (7.1)–(8.1)), and then it hops to the node that owns
the next column of A (line (9.1)). The ID of this node is found using a
column-to-node map function node_map( ). Scaler then waits for the next
round of computation. Each of the p Updaters loads the newly computed
G column k (again the local column index is col(k)) into its agent variables
(line (12)), and then hops to the appropriate node (line (12.1)). In parallel,
these p threads update the A columns for which they are responsible on all
p nodes, using the G column stored in their agent variables and the matrix
entries stored in the distributed shared variable A (line (15)). Two maps are
used in the NavP code (lines (4), (9.1), (12), (12.1), and (15)) and they are
application dependent. In particular, here the column-to-node map is
node_map(k)=(k − 1)% p+1, and the global-to-local-column-index map is
col(k)=(k − m)/p+1, where k is global column index, p is number of
nodes, and m is current node ID. Because matrix columns are not assigned
to nodes using a linear map, local memory accessing cannot be done with
shifted pointers, (5) but the maps we use here are simply by-products of a
user defined data distribution scheme.
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Scaling is performed sequentially by a single thread, while updating is
done in parallel by p concurrent threads. Figure 4(b) depicts how the two
types of threads coordinate to achieve interleaved sequential and parallel
computing.

In Fig. 6(b), signalEvent(Evt, k+1) at line (17.1) signals the (k+1)st
event of the variable Evt, and waitEvent(Evt, k+1) and waitEvent(Evt, k)
at lines (9.2) and (12.2) wait till the (k+1)st or the kth events or higher is
signaled, respectively. After Scaler executes the inject() command at
line (8), it hops away immediately, and then the injected threads start exe-
cuting (line (12)). Thus Scaler hops to the next node and continues its
computation without having to wait for the injected Updaters to hop away.
The waitEvent() and signalEvent() primitives (lines (9.2), (12.2), and (17.1),
respectively) are used to protect the distributed shared variable A from
being updated in an incorrect order. In particular, waitEvent() at line (9.2)
makes Scaler wait until the Updater working on the same node finishes
updating the distributed shared variable A and signals an event Evt at
line (17.1). waitEvent() at line (12.2) makes sure that the Updaters from
earlier iterations have all finished, so the current Updater can start doing its
work.

The NavP pseudocode (Fig. 6(b)) preserves algorithmic integrity with
respect to the DSM original (Fig. 6(a)), and also with respect to the
sequential original. (26) The synchronization events (lines (9.2), (12.2), and
(17.1) in Fig. 6(b)) do the same job as the synchronization barriers do
(lines (7) and (9) in Fig. 6(a)). In addition to the event-related lines, two
hops (lines (9.1) and (12.1)) and one load statement (line (12)) are inserted
to tell the threads where to migrate and what to carry for later sharing and
computing. Two maps, namely node_map() and col(), are used to tell the
code about how data is distributed. Notice that the for loop at lines
(7.1)–(8.1) in Fig. 6(b) is not superfluous: the DSM code is written in an
SPMD (single program multiple data) style and is executed on all nodes,
while the NavP approach represents a single thread that orders the com-
putational steps in its natural sequence, executes all the sequential portions
of the computation on the appropriate node, and orchestrates the execu-
tion of the parallel portion of the computation by injecting multiple self-
migrating threads that hop to the appropriate nodes and perform their
work independently.

Pseudocode for an MP solution of Cholesky factorization, adapted
from the implementation presented in the book, (26) is presented in Fig. 7.
Each process executing this code runs a while loop (line (2)), with loop
index q, over all local columns this node owns. A global column index k,
which is the same as the loop index k in Fig. 6(a) and (b), is being com-
puted by all processes (lines (8) and (25)). The local column index q is
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mapped to its corresponding global position in the matrix A, and is then
tested against the global index k (line (3)). If the test result in line (3) is
true, the process owns the column that needs to be scaled. Therefore, it
scales the column to get a new G column (line (4)), and passes the new G
column to its right neighbor in the node ring (line (6)), before it uses the
new G column to update the local A columns (line (11)). If the test result in
line (3) is false, this process will receive the new G column from its left
neighbor (line (15)), forward it to its right neighbor if needed (line (19)),
and then update its local A columns (line (23)).

Fig. 7. Pseudocode for parallel Cholesky factorization in
MP.
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Table IV compares the elapsed time and speedup among the NavP, the
MP, and the ScaLAPACK implementations. ScaLAPACK implements a
block-fashion Cholesky factorization algorithm. Sequential timings were
generated by running ScaLAPACK’s implementation on one node and
choosing a matrix block size of 64×64. This gives a sequential perfor-
mance that is better than those using other block sizes, and is better than
that of our sequential code in C. For the parallel run of ScaLAPACK, we
chose a matrix block size of 1×1 so that the underlying algorithm is the
same as what the NavP and MPI programs implement. Figure 8 depicts the

Table IV. Performance of Parallel Cholesky Factorization

Matrix Size 3000 5000 7000

Number of Time Speed Time Speed Time Speed
Workstations (s) up (s) up (s) up

Sequential

1 95.04 1.00 453.15 1.00 1373.50 1.00

Messengers

2 66.72 1.42 361.67 1.25 1052.91 1.30
4 30.47 3.12 177.56 2.55 519.86 2.64
6 22.39 4.24 113.92 3.98 346.20 3.97
8 17.66 5.38 81.31 5.57 258.11 5.32

10 15.27 6.22 64.51 7.02 203.69 6.74
12 13.91 6.83 54.60 8.30 166.30 8.26

MPI

2 67.08 1.42 363.07 1.25 1031.49 1.33
4 30.34 3.13 177.85 2.55 517.02 2.66
6 21.01 4.52 112.46 4.03 346.84 3.96
8 18.14 5.24 82.02 5.53 263.03 5.22

10 14.61 6.51 64.70 7.00 200.60 6.85
12 14.31 6.64 54.66 8.29 170.31 8.06

ScaLAPACK

2 77.05 1.23 358.63 1.26 1000.71 1.37
4 36.34 2.62 178.32 2.54 508.66 2.70
6 23.75 4.00 117.17 3.87 342.84 4.01
8 19.02 5.00 84.08 5.39 261.06 5.26

10 16.36 5.81 68.37 6.63 209.17 6.57
12 14.18 6.70 56.30 8.05 177.05 7.76

24 Pan et al.



1 2 3 4 5 6 7 8 9 10 11 12
1

2

3

4

5

6

7

8

9

10

11

12
Speedup of Parallel Cholesky Factorization (3,000X3,000 matrix)

Number of Workstations

S
pe

ed
up

MESSENGERS
MPI
ScaLAPACK

(a)

1 2 3 4 5 6 7 8 9 10 11 12
1

2

3

4

5

6

7

8

9

10

11

12
Speedup of Parallel Cholesky Factorization (5,000X5,000 matrix)

Number of Workstations

S
pe

ed
up

MESSENGERS
MPI
ScaLAPACK

(b)

1 2 3 4 5 6 7 8 9 10 11 12
1

2

3

4

5

6

7

8

9

10

11

12
Speedup of Parallel Cholesky Factorization (7,000X7,000 matrix)

Number of Workstations

S
pe

ed
up

MESSENGERS
MPI
ScaLAPACK

(c)

Fig. 8. Performance of parallel Cholesky factorization. (a) 3K × 3K, (b) 5K × 5K, (c)
7K × 7K matrices.

speedup data. Again, the speedup of our NavP implementation is almost
the same as those of the MPI, and their trends as the number of machines
increases are the same which indicates same scalability. There is no per-
formance degradation in spite of the greatly improved programmability.

6.3. Summary of Steps

In this section, we describe how the three typical steps discussed in
Section 5 map into the two real-world examples described in Sections 6.1
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and 6.2. Data distribution: We first distribute columns of a matrix in block
fashion in both Jacobi iteration and Cholesky factorization. The number of
machines is chosen such that the size of the data set on each machine fits in
the main memory completely. DSC: We decide which sub-computations
are to be implemented. In Jacobi iteration, the sub-computation to be
implemented is the loop between lines (5)–(9) in Fig. 2(a), which is the sub-
computation of a new solution vector. In Cholesky factorization the two
nested loops (lines (1)–(10) and (13)–(17) in Fig. 6(a)) represent the two sub-
computations of scaling and updating, respectively. In both cases, we
augment the code with hop() and load/unload statements to get a DSC
program. To follow the principle of pivot-computes in each sub-computa-
tion, we let the loop indices and the vectors meet with the larger matrix
blocks. Parallelization: In Cholesky factorization, the updating steps on all
the nodes are independent of each other. Therefore, we take Step 3.1 and
assign them to concurrent self-migrating threads. This transformation is
depicted in Fig. 9. We add events and injections to coordinate the threads
from different loops. We further realize that distributing the columns in a
round-robin fashion will provide better load balancing, so we reiterate back
to Step 1 and adjust the data distribution to a round-robin fashion. In
Jacobi iteration, we look for pipelining opportunity. We observe that the

Fig. 9. Cholesky factorization. (a) DSC. (b) DPC after Step 3.1.
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Fig. 10. Jacobi iteration. (a) DSC. (b) DPC after Step 3.2. (c) DPC after a
phase shift.
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computation of different new sub-solution vectors can really be done at the
same time; so we take Step 3.2 and assign the computations of different sub-
solution vectors to different threads, and have them run in a pipeline.
Furthermore, we phase shift these threads to achieve complete parallelism,
and this does not affect the correctness of the result. The above transfor-
mations are depicted in Fig. 10.

7. COMPARISON OF APPROACHES

In this section we compare the NavP approach with the two classical
solutions, namely MP and DSM. Table V summarizes the comparison of
the approaches, with explanations as follows.

7.1. Data Distribution

There are two ways to handle data distribution. In a classical DSM
system in which data distribution is completely transparent, it is unlikely
that data distribution happens to be consistent with computation distribu-
tion, because this would require information that is application dependent.
This is obvious in Cholesky factorization in which the round-robin data
distribution is based on the decision of distributing computation in the
same fashion. As a result, in classical DSM systems the nodes that perform
certain computations may not own the corresponding data being com-
puted, resulting additional communication overhead. In some variations of
DSM systems, a programmer is able to specify the data distribution
pattern. For example, HPF and UPC (27–30) allow a programmer to define
the data distribution pattern with a key word shared, which can be used
to define ‘‘block,’’ ‘‘cyclic’’ (i.e., round-robin in Cholesky factorization),
or ‘‘cyclic block’’ type of data distribution. But now data distribution

Table V. Comparison of Approaches

Aspect Unstructured DSM MP NavP

1. data distribution transparent explicit explicit
2. data sharing transparent, explicit, message explicit (hop),

shared var DSV+agent var
3. data locality does not follow follows follows

pivot-computes pivot-computes pivot-computes
4. parallel program stationary DSCs strictly sequential navigational DSCs

composition processes
5. parallel program explicit, global explicit, remote explicit, local event

synchronization barrier message
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is no longer completely transparent. In MP and the NavP approach, a
programmer controls the data distribution pattern explicitly.

7.2. Data Sharing

Both DSM and NavP use shared variable programming, but they have
different mechanisms. (5) In DSM, shared variables are put on distributed
shared memory (also called shared virtual memory), and are accessible
from any node, while in Messengers distributed shared variables are con-
structed logically from node variables that are only accessible locally. An
example of a DSV is the matrix A in Cholesky factorization, shown in
Fig. 6(b). In a page-based DSM, data entries belonging to computations of
different nodes can happen to be put in the same page, resulting in false
sharing as multiple nodes are updating the parts of which they own the
computations. In the NavP approach, false sharing is impossible. The large
sized data is put to stationary DSVs, and the only way for the threads to
shared them is to hop to the node where the data resides. It is important to
realize that a shared variable does not have to be globally accessible. Inter-
node communication is carried out by thread migration, and the agent
variables are private to their owner threads and are not shared at all. In
MP, communication is through messages, and processes do not share any-
thing directly among themselves, hence false sharing is not a possibility.

Another well known problem with DSM is its lack of memory
coherence. Because of the larger-than-necessary data movement, data
replication is used in order to reuse the data moved and amortize the cost
of communication over multiple repeated accesses. Data replication is done
also to increase the degree of concurrent accessing. But replication leads to
the problem of incoherence, and memory coherence protocols are then
needed in order to guarantee correctness. Now the new problem is that the
traffic caused by consistency requirements is by itself a big overhead in
many situations. The protocols are complicated, and they do not always
provide efficient solution for dynamic data access patterns. In the NavP
approach, similar to MP, no data is replicated, therefore no memory
coherence protocol is needed. Also, in the NavP approach, since commu-
nication between nodes is intra-thread, there is no need to have a ‘‘recei-
ver’’ in the application code to pair up with the hop. This means the NavP
approach uses one-sided communication naturally. (20, 31)

7.3. Data Locality

In the DSM implementation of Cholesky factorization, each process
executes a parallel data-independent sub-task (i.e., updating). The sequen-
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tial part (i.e., scaling) is carried out by a single process, at which time all
other processes wait. The DSM code looks almost the same as the original
algorithm. The problem with the DSM program is its efficiency. The
scaling part is not always done by the pivot, or the owner node of the
column being scaled. Rather, it is all done on the node with ID m==1, as
shown in Fig. 6(a). This violates the principle of pivot-computes, and the
result is that almost the entire matrix will be pulled to the scaling node,
which is more expensive than needed. This example shows why not
knowing the data distribution, or in other words, not knowing who the
pivots are for each sub-computation, could result in less efficient code.
Indeed, experiments have shown that exploiting data locality has greater
benefits over load balancing, and hence should take the priority. (22) One of
the ways to ensure that the pivot does scaling, is to put the data distribu-
tion in the programmer’s hands so that in the code the pivot nodes can be
specified to compute.

The data being moved is stored in agent variables. In Jacobi iteration,
the agent variables are: um, which stores the sub-solution-vector of the next
iteration; err, which is the global error; and j and c, which are loop coun-
ters, all shown in Fig. 2(b). In Cholesky factorization, the communicated
data moved by the Updaters is all the G columns stored in the agent vari-
able vloc (loaded in line (12), and carried away by the hop() statement in
line (12.1) in Fig. 6(b)). The data being moved by the Scaler is the loop
index k. The NavP implementation moves almost the same amount of data
as does the MP program. The only additional data are (1) The Messenger
control block (MCB) that is about 200 bytes in size; (2) Loop indices. Since
small sized data is moved to meet with large sized data in both MP and
NavP code, or in other words, these two approaches both follow the prin-
ciple of pivot-computes, they are both efficient and scalable.

7.4. Parallel Program Composition

The NavP approach decomposes a problem into DSCs, some or all of
which are concurrent. In Jacobi iteration, multiple concurrent threads are
each a DSC but altogether doing data parallel computing. This is clearly
seen in Fig. 4(a). In Cholesky factorization, the decomposition is more
heterogeneous. As depicted in Fig. 4(b), the thread Scaler conducts the dis-
tributed sequential scaling, and it injects multiple concurrent data parallel
Updaters, which are all DSCs because they compute with the G column
and the columns to be updated, and in all but one case these columns
reside on two different nodes. Decomposing a problem into DSCs each
implemented using NavP helps programmability. This is best seen by
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comparing the NavP and MP pseudocodes shown in Fig. 6(b) and Fig. 7
respectively. The explanation is as follows.

As discussed in Section 3, the NavP approach preserves algorithmic
integrity of a DSC, while the MP approach does not. The three problems
and solutions shown in Table II are exemplified in Cholesky factorization
as follows. First, in the original algorithm the scaling of all columns of A is
put in a loop over the global index k. This computation is required by the
principle of pivot-computes to happen across machine boundaries as the
columns that are being scaled become remote. The MP solution breaks the
global loop over k into p smaller local loops over index q (line (2) in
Fig. 7). In the NavP code shown in Fig. 6(b), the hop() statement at
line (9.1) solves the problem. Second, the loop index k is locally scoped to
the loop, and when the locus of computation shifts, it needs to follow. The
MP solution is to locally recompute k at lines (8) and (25) shown in Fig. 7.
In the NavP code, k is an agent variable. This data transfer in the NavP
approach is implicit because to a self-migrating thread, although the locally
scoped data is carried across machine boundaries, the communication is
still intra-thread. Third, in MP code shown in Fig. 7, lines (4), (6), (11), and
(23) all use the local column indices (the second index in A( · , · )). In the
situation where the global correspondence of a local index is needed (e.g.,
at line (3)), the local data view is mapped back to global. In the NavP code,
we can preserve the global data view by using the DSV A, and the global-
local data map col( · ).

Section 4 pointed out that composing DPC with DSCs can avoid code
tangling, a problem with the MP approach. In the NavP implementation of
Cholesky factorization, the problem is decomposed into two types of
DSCs, namely Scaler and Updaters, and their coordination are done using
injections and events, as shown in Fig. 6(b). Since the interfaces among
different DSCs are only injections and events, the composition incurs very
small code tangling, and no code for computation is tangled at all. In MP
parallel programs, code belonging to different sequential computations
might be grouped together according to execution location. For example,
in the MP implementation of Cholesky factorization shown in Fig. 7, the
code responsible for scaling and updating respectively is tangled on the
scaling node (lines (4)–(12)), but not on the other nodes (lines (15)–(24)).

In DSM, parallel programs are composed also using DSCs.
Nevertheless, the DSCs in DSM are all stationary and therefore may not
exploit data locality by following the principle of pivot-computes. An
example is the scaling which pulls all the matrix columns to the node with
ID m==1, as shown in Fig. 6(a).

The disadvantages of MP programming are rooted in the fact that MP
forces its programmers to handle non-trivial location-related details in their
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code. In contrast, the NavP approach leaves those details of implementa-
tion to a compiler which is good at restructuring code based on locations.
To be fair, we should point out that the MP approach does not always res-
tructure code significantly causing difficulties in programming. For
example, in Jacobi iteration, since all nodes conduct the same computa-
tions, and each of them is matrix-vector multiplication in block fashion
that completely finishes on one node, no matter how we decompose the
problem (i.e., into DSCs or into computations that are centered around
executing nodes), the code looks pretty much the same. In general, MP
handles ‘‘homogeneous’’ data parallel computing well.

7.5. Parallel Program Synchronization

In the DSM code shown in Fig. 6(a), two barriers are used for syn-
chronization. A barrier involves global communication and is in most cases
a restriction that is stronger than necessary. A useful feature of the NavP
approach is that since all data accesses to variables are local, the only syn-
chronization required is among different threads on the same node; in
other words, no inter-node synchronization is required. The performance
advantage in Cholesky factorization resulting from only requiring local
synchronization can be seen in Fig. 11(b): the next round of scaling can
start as soon as the previous local updating is done, regardless of whether
or not the remote updatings are finished. In contrast, the global barriers
(lines (7) and (9) in Fig. 6(a)) are less efficient. As depicted in Fig. 11(a), the
next iteration can only start after all Updaters from the previous iteration
have finished. In a distributed environment with relatively high network
latency, the performance improvement from this overlapping using local
synchronizations can be significant. Both DSM and the NavP approach
use shared variable programming, but DSM needs barriers while NavP
approach does not. The NavP approach decouples communication from
synchronization, as can be seen in the pseudocode shown in Fig. 6(b).
Between nodes, communication is done by carrying agent variable. For
example, the G columns are being carried by the Updaters at line (12). This
is an intra-thread activity, and is done, at application level, by each indi-
vidual thread and therefore no synchronization is needed (or in other
words, synchronization is subsumed in the flow control), similar to the one-
sided communication in MPI-2. (31) Multiple self-migrating threads com-
municate among themselves using shared variables. The synchronization of
these threads is through local events or injections (see lines (8), (9.2), (12.2),
and (17.1)). In contrast, with MP messages sent across nodes are used for
communication, synchronization, or both purposes.
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Fig. 11. Synchronization. (a) Global in DSM. (b) Local
for NavP.

8. CONCLUSIONS

In this paper, we have developed a new way of doing distributed par-
allel programming. We call it the navigational programming (NavP)
approach, and described the steps of the approach so that it can be applied
to the parallelization of various applications. We applied the NavP
approach to two real-world parallel algorithms, namely Jacobi iteration
and Cholesky factorization. Our NavP and MPI implementations of the
algorithm yield almost identical performance. Since there is a general
agreement that the performance of MP is considerably better than that of
DSM in many non-trivial applications, our results imply that the perfor-
mance of NavP is also superior to that of DSM. From the efficiency point
of view, the NavP approach is as suited for general purpose high perfor-
mance computing as MP is. In contrast to MP, the advantage of ease of
programming is clearly shown in the NavP implementations. The reason
for NavP parallel programs to be efficient and scalable is their data locality
and synchronization, while their data sharing and parallel program com-
position contribute to the ease of programming, as shown in Table V.
While the examples in this paper are drawn from the domain of numerical
analysis, the NavP approach is a general one to developing general purpose
parallel distributed programs.

Both the MP and the NavP approaches have one thing in common:
data distribution and data sharing are explicit, rather than transparent as
in DSM (see Table V).
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1. data distribution: The programmer must develop an application-
dependent strategy for data distribution, and then construct, as by-
products of the strategy, the data-node map and data-global-local
map. These maps are then explicitly used in the code. In contrast,
none of these maps shows up explicitly in DSM code, because the
mapping is taken care of by the underlying DSM system.
However, this by no means says that DSM programmers are
worry free. In fact, as shown in the Cholesky factorization, for the
purposes of load balancing, a DSM programmer does need a data
accessing strategy, from which constructing the maps is only a
small step.

2. data sharing: A DSM system provides the benefits of transparent
data sharing for its programmers. However, this seeming advan-
tage can be the cause of poor performance and scalability of DSM
programs because a programmer can easily make a wrong decision
of moving larger amount of data than necessary in a sub-compu-
tation. In the NavP approach, variable sharing is accomplished
by explicitly inserting hop( ) and load/unload statements. This
approach provides a balance between convenience and efficiency:
the code is easy to develop from the original algorithm, and the
programmer has full control over exactly when and where data
movement happens.

There are two basic approaches to parallel programming: explicit
parallel programming—the programming of explicitly parallel algorithms,
or implicit parallel programming—feeding a parallelizing compiler with
sequential programs. (21) Achieving completely implicit parallel program-
ming is very difficult for the compiler builders because the parallelizing
compiler must analyze and understand the dependencies in different parts
of the sequential code to ensure an efficient mapping to a parallel compu-
ter. Recent research trends have shown compromises in dealing with these
difficulties: in distributed memory, data distribution is put into the hands
of the programmers and hence is no longer completely transparent in
systems such as UPC and HPF. (27–30) In physically shared memory, where
data distribution is less of a problem, parallel regions can be specified by
the programmers in order for the compiler to better find concurrency, as in
OpenMP. (32) Still implicit and explicit parallel programming styles have
their strengths and weaknesses, and hence have their own applicable areas.
In particular, implicit parallel programming is easy to use for the
programmers, and it explores instruction-level parallelism, whereas explicit
parallel programming requires more input from the programmers, and is
good at higher level task-parallel problems.
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Compromises are necessary not only between implicit and explicit
approaches, but also among approaches within the explicit parallel pro-
gramming itself. DSM and MP have a tendency to converge in some
aspects. One example is the introduction of explicit data distribution in
HPF and UPC. The other is the one-sided communication introduced in,
e.g., MPI-2. But these changes do not remove the difficulties rooted in sta-
tionary processes. Explicit data distribution in DSM is not really useful
unless the locus of computation is explicitly transferred. If this is done
using stationary processes, the disadvantage in programmability is the same
as with MP: algorithmic integrity is lost. One-sided communication repre-
sents an attempt to augment the MP model by adding memory-sharing
capability. If this is done using only stationary processes, it can lead to a
violation of pivot-computes, because the single stationary process involved
may compute with a large amount of remote data. Thus, these innovations
only partially achieve their goals unless processes have the ability to
navigate. NavP allows the programmers to take full advantage of explicit
data distribution while preserving algorithmic integrity. NavP also allows
accessing remote data—the goal of one-sided communication in
MP—while following the principle of pivot-computes.

The NavP approach, as presented here, belongs to explicit parallel
programming, and so do the DSM and MP approaches used as compari-
sons. As such, this approach, similar to its two counterparts, leaves the
problems of finding efficient data mapping, maximizing parallelism,
achieving load balancing, and adapting to changing network environments,
to its programmers. Nevertheless, there is nothing that prevents the NavP
approach from supporting implicit parallel programming in the future. For
example, the NavP programs, which preserve their original code structures,
could be used to serve as an intermediate step at which data locality is
exploited by a future new parallelizing compiler which supports strong
mobility. Our future work includes making the NavP approach more
implicit by building tools to automate its three steps.
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